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How does the number of times a fact is seen 
during pre-training impact whether a language 

model learns that fact?

Simple Experiment:
1. Identify a set of facts
2. Count how many times each fact occurs in a pre-training dataset
3. Evaluate an LMʼs ability to recall each fact
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Identifying a set of facts

Repurpose existing factoid QA datasets (think TriviaQA, Natural Questions, etc.):

Florence,( )
Question - Answer Pair Fact

The poet Dante was born in the city of FlorenceIn what city was the poet Dante born?
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Counting fact instances in pre-training datasets

Florence,( )

✔ ✔✘

1.  Entity link QA pair

2. Entity link training documents

3. Count documents containing       
     both Q and A entities

In what city was the poet Dante born?
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Evaluating a Language Modelʼs Fact Recall

Few-Shot Question Answering

Q: In what city was 
the poet Dante born?

Q: In what year were 
the Summer Olympics 
held in London?

A: 2012

Q: Who was the first 
human in space?

A: Yuri Gagarin

A:

Florence
✔
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Language models struggle to capture long-tail facts

Observation #1
Larger models are more effective at 

capturing facts that are both rare and 
common in the training data

Observation #2
Models of all sizes require a fact to be 
present many times in the training data 

to reliably learn that fact
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Scaling model size has diminishing returns for learning long-tail knowledge 

TriviaQA Rare Fact AccuracyNatural Questions Rare Fact Accuracy



What other capabilities have been 
characterized in this way?
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Quantity of relevant data influences language model capabilities

Example 1 LMs tend to memorize text that appears 
more in training data
Kandpal et. al. 2022a, Carlini et. al. 2022

Example 2 LMs excel at arithmetic on numbers that 
appear more in the training data
Razeghi et. al. 2022

Example 3 LMs learn facts that appear more in the 
training data
Kandpal et. al. 2022b, Mallen et. al. 2022

Example 4 LMs can perform variants of a task 
when that variant appears more in the training data
Mccoy et. al. 2023
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Quantity of relevant data influences language model capabilities

Memorization Arithmetic Fact Learning Task Learning
Kandpal et. al. 2022a

Carlini et. al. 2022

Razeghi et. al. 2022 Kandpal et. al. 2022b

Mallen et. al. 2022

Mccoy et. al. 2023

Higher-level (more “interestingˮ) behaviors

but also more difficult to study

Approximate Training FrequencyExactly Compute Training Frequency
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Understanding the counterfactual effect of individual training examples

Simulating the removal of a training example without re-training from scratch is 
difficult

What about an attribution method like Influence Functions Koh & Liang 2017?

These only accurately simulate leave-one-out retraining when…
● Models are trained with a strongly-convex objective
● Models are trained to convergence
● Training is deterministic

Instead letʼs focus on methods that allow exact(! and scalable(! attribution under 
more realistic assumptions
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Assume: Our dataset is heterogeneous, containing some data that we must do 
attribution for and some that do not need to do attribution for

Approach: 
1. Pre-train an LLM on data that does not require attribution
2. Incorporate the remaining data into the LLM in a “simpleˮ way that allows for 

exact and efficient attribution
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Q: In what city was 
the poet Dante born?

Dante Alighieri, 
commonly known as 
Dante, is an Italian 
poet, writer, ...

Poetry is a form of 
literary art that 
uses aesthetic and 
rhythmic…

…
 

Florence 0.7
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An interesting research question on incentive-alignment

● If training data contributors were paid proportionally to the counterfactual value 
of their data, what kind of data are they incentivized to produce? 
○ High-attribution → high-quality data?
○ High-attribution adversarial examples?
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