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What is an Energy Based Model?
  

Grathwohl et. al. 2020

Du & Mordatch 2020

Nijkamp et. al. 2019



EBM Training 
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Markov Chain Monte Carlo-based 
Training
  



Stochastic Gradient Langevin Dynamics 
(SGLD)
  

Gradient-based proposal 
efficiently finds low-energy 

regions

Decaying step size makes 
accept-reject unnecessary

Intuition:
• Early trajectory behaves 

like gradient descent 

• Late trajectory behaves 
like a random walk in the 
low-energy region



SGLD Training In Practice
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Learned Sampling Networks
  

Learned sampling methods vary in 
how they maximize generator entropy



Examples From the Literature
� Deep Directed Generative Models with Energy-Based Probability Estimation (Kim & Bengio 2016)
�  Estimate generator entropy with layer activation entropy (assuming activations are normally distributed)

�Maximum Entropy Generators for Energy-Based Models (Kumar et. al. 2019)
�  Estimate generator entropy from mutual information between generator input and output

�No MCMC for me: Amortized sampling for fast and stable training of energy-based models 
(Grathwohl et. al. 2020)
�  Estimate generator entropy through a variational approximation
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Score Matching
  



Sliced Score Matching
  



Denoising Score Matching
  

 

 

 



Rationale for Multiple Noise Scales
  

  



Comparison of Training Methods
Strengths Weaknesses

MCMC-Based 
Training

• Implicit sampling using backprop on the 
EBM provides a good inductive bias 
(convolutional EBM 🡪 de-convolutional 
sampling)

• Slow due to sequential MCMC 
at each training iteration

• Tricky to tune SGLD 
hyperparameters to get chains 
to mix quickly

Learned Samplers • Efficient training
• Efficient sampling

• Unstable training due to joint 
optimization of generator and 
EBM

• Double the number of 
parameters to estimate

Score Matching • Efficient and stable training • Only trains on points in the 
vicinity of the true data 
distribution
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Future Directions
� Energy functions are extremely flexible (any scalar function of the data)

� What values would make for interesting and useful energy functions?
�  Example: Classifier uncertainty as an energy function

�  Low uncertainty on the data distribution is a common inductive bias in semi-supervised learning

�  High uncertainty away from the data distribution is desirable, but not currently a feature of modern 
deep learning models 

� More generally, how can EBM training be incorporated into classifiers to give classifiers useful 
properties?
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