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What is an Energy Based Model?

Nijkamp et. al. 2019

> EBM’s are defined by an energy function Eg: R% - R

e_Ee ()

> pe(x) = 20) where Z(0) = [ e Eoe® gy

» Low energy samples = high probability density
» High energy samples = low probability density

Grathwohl et. al. 2020
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EBM Training

» Trained via Maximum Likelihood to match a target distribution p

» L(O) = Ex-p [—log pe ()]

> VoL(0) = Ey+ ) [VgEg(x™)] — Ex—p, [VoEg(x™)] Independent of partition function Z(6)!
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[l Method 1: MCMC-based Training
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Markov Chain Monte Carlo-based
Training
> VoL(0) = Ey+ y[VoEg(x™)] — Ex——p, [VoEg(x7)]

» Problem: Evaluating Vy L(0) requires sampling from pg

» Solution: Sample using Markov Chain Monte Carlo (MCMC) during training

Initialize a chain by randomly initializing sample x,
From a proposal distribution g, sample x;,1~q(- | x¢)

Accept the new sample with probability e ~£e(*t+1)+Eg(xc)

> W N e

Go tostep 2



Stochastic Gradient Langevin Dynamics
(SGLD)

» MCMC variant with gradient-based proposal distribution and no accept-reject step

» Xes1 = X —NVeEp(xe) + 2yfjw, @~N(0,1), n—~0ast oo
|

Gradient-based proposal Decaying step size makes
efficiently finds low-energy accept-reject unnecessary
regions

Intuition:
* Early trajectory behaves
like gradient descent

e Late trajectory behaves
like a random walk in the
low-energy region




SGLD Training In Practice

» Separately select SGLD step size and noise scale hyperparameters
7 Xep1 = X —NVeEg(xe) + 0w, w~N(0,1)
» Note: This is equivalent to SGLD on a scaled version of Eg (temperature sharpened distribution)

»Keep past samples in a buffer and sample from the buffer to initialize the SGLD chains

At each training iteration:

1. Initialize SGLD chains with samples from sample buffer

2.  Run SGLD for a fixed number of steps to generate new samples

3. Update energy function parameters 6 using generated samples and true samples
4

Store generated samples in sample buffer
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[l Method 2: Learned Sampling Networks
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Learned Sampling Networks

» Motivation: MCMC sampling is inherently sequential (i.e., slow)
» Instead learn a function G that produces samples from pg

» Train Eg using Ly = ]Ex+~p[E9 (xH)] - Ex-~pg [Eg (x™)] assuming p; = pg

» Train G using L = KL(pg|lpg) = ]Ex~pa[E9(x)] ~H(pg) + log Z(9)

Learned sampling methods vary in
how they maximize generator entropy



Examples From the Literature

[l Deep Directed Generative Models with Energy-Based Probability Estimation (Kim & Bengio 2016)
[l Estimate generator entropy with layer activation entropy (assuming activations are normally distributed)

[IMaximum Entropy Generators for Energy-Based Models (Kumar et. al. 2019)
[l Estimate generator entropy from mutual information between generator input and output

[INo MCMC for me: Amortized sampling for fast and stable training of energy-based models
(Grathwohl et. al. 2020)

[] Estimate generator entropy through a variational approximation
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[l Method 3: Score Matching
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Score Matching

» Rather than match pgy to p, instead match V. log pg to V., logp

1
> L(0) = S Ex-plllVilogpg (x) — Vilogp (0)|13]
!
= Ex-p |5 Ilogpe (113 + tr(72 logpg (x)) |+ C
1
o Eyp |3 17 Eg (113 = tr(V2E ()] + C

» Objective avoids computing partition function, but requires computing the Hessian trace



Sliced Score Matching

» Uses Hutchinson’s Estimator: an efficient and unbiased estimator for matrix trace

> tr(A) = E[vTAv] ifv ~N(0,I)

» Hessian trace can be computed as a Hessian-vector product
» Avoids explicitly computing the full Hessian

» Efficient with reverse-mode auto-differentiation (Pytorch, Tensorflow, etc.)




Denoising Score Matching

» The score matching objective can also be interpreted as denoising noisy samples

|

X —X

1 .
» L(O) = 5 Exep, 2~nxo?) [”_VxEB (%) —

o2

Intuition:

* L(0) is minimized when
—V,Eg(X) points toward the
original sample x

* Alternatively, a gradient descent
step on Eg starting from X should
go in the direction of x




Rationale for Multiple Noise Scales

» Recent work suggests using multiple Gaussian noise scales {g; {-‘;1
» Generative Modeling by Estimating Gradients of the Data Distribution (Song & Ermon 2019)

» Learning Energy-Based Models in High-Dimensional Spaces with Multi-Scale Denoising Score Matching
(Li et. al. 2019)

The samples x and X we The samples x and X that
think are seen during are actually seen during
training training




Comparison of Training Methods
T e | wealnesses

MCMC-Based * Implicit sampling using backprop on the e Slow due to sequential MCMC
Training EBM provides a good inductive bias at each training iteration
(convolutional EBM [ de-convolutional e Tricky to tune SGLD
sampling) hyperparameters to get chains
to mix quickly
Learned Samplers ¢ Efficient training e Unstable training due to joint
e Efficient sampling optimization of generator and
EBM

* Double the number of
parameters to estimate

Score Matching e Efficient and stable training e Only trains on points in the
vicinity of the true data
distribution
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Future Directions

[l Energy functions are extremely flexible (any scalar function of the data)

] What values would make for interesting and useful energy functions?
[l Example: Classifier uncertainty as an energy function

[l Low uncertainty on the data distribution is a common inductive bias in semi-supervised learning

[1 High uncertainty away from the data distribution is desirable, but not currently a feature of modern
deep learning models

[l More generally, how can EBM training be incorporated into classifiers to give classifiers useful
properties?
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