How To Train Your Energy-Based Model

NIKHIL KANDPAL

ADVISOR: COLIN RAFFEL

Energy-based Model Introduction

Method 1: MCMC-based Training

- Method 2: Learned Sampling Networks
- Method 3: Score Matching

□ Future Directions

What is an Energy Based Model?

 \succ EBM's are defined by an energy function $E_{\theta} \colon \mathbb{R}^d \to \mathbb{R}$

>
$$p_{\theta}(x) = \frac{e^{-E_{\theta}(x)}}{Z(\theta)}$$
 where $Z(\theta) = \int e^{-E_{\theta}(x)} dx$
> Low energy samples → high probability density
> High energy samples → low probability density

Nijkamp et. al. 2019

EBM Training

Trained via Maximum Likelihood to match a target distribution p

Independent of partition function $Z(\theta)$!

Energy-based Model Introduction

Method 1: MCMC-based Training

Method 2: Learned Sampling Networks

Method 3: Score Matching

Future Directions

Markov Chain Monte Carlo-based Training

- $\succ \nabla_{\theta} L(\theta) = \mathbb{E}_{x^+ \sim p} [\nabla_{\theta} E_{\theta}(x^+)] \mathbb{E}_{x^- \sim p_{\theta}} [\nabla_{\theta} E_{\theta}(x^-)]$
- > Problem: Evaluating $\nabla_{\theta} L(\theta)$ requires sampling from p_{θ}
- Solution: Sample using Markov Chain Monte Carlo (MCMC) during training
- **1**. Initialize a chain by randomly initializing sample x_0
- 2. From a proposal distribution q, sample $x_{t+1} \sim q(\cdot | x_t)$
- 3. Accept the new sample with probability $e^{-E_{\theta}(x_{t+1})+E_{\theta}(x_t)}$
- 4. Go to step 2

Stochastic Gradient Langevin Dynamics (SGLD)

MCMC variant with gradient-based proposal distribution and no accept-reject step

SGLD Training In Practice

Separately select SGLD step size and noise scale hyperparameters

 $> x_{t+1} = x_t - \eta \nabla_x E_{\theta}(x_t) + \sigma \omega , \quad \omega \sim N(0, I)$

 \triangleright Note: This is equivalent to SGLD on a scaled version of E_{θ} (temperature sharpened distribution)

>Keep past samples in a buffer and sample from the buffer to initialize the SGLD chains

At each training iteration:

- 1. Initialize SGLD chains with samples from sample buffer
- 2. Run SGLD for a fixed number of steps to generate new samples
- 3. Update energy function parameters θ using generated samples and true samples
- 4. Store generated samples in sample buffer

Energy-based Model Introduction

Method 1: MCMC-based Training

- Method 2: Learned Sampling Networks
- Method 3: Score Matching
- **Future Directions**

Learned Sampling Networks

Motivation: MCMC sampling is inherently sequential (i.e., slow)
 Instead learn a function G that produces samples from p_θ

 $\succ \text{ Train } E_{\theta} \text{ using } L_{E} = \mathbb{E}_{x^{+} \sim p} [E_{\theta}(x^{+})] - \mathbb{E}_{x^{-} \sim p_{G}} [E_{\theta}(x^{-})] \text{ assuming } p_{G} \approx p_{\theta}$

 $\succ \text{ Train } G \text{ using } L_G = KL(p_G || p_\theta) = \mathbb{E}_{x \sim p_G}[E_\theta(x)] - \mathcal{H}(p_G) + \log Z(\theta)$

Learned sampling methods vary in how they maximize generator entropy

Examples From the Literature

Deep Directed Generative Models with Energy-Based Probability Estimation (Kim & Bengio 2016)
 Estimate generator entropy with layer activation entropy (assuming activations are normally distributed)

Maximum Entropy Generators for Energy-Based Models (Kumar et. al. 2019)

Estimate generator entropy from mutual information between generator input and output

ONO MCMC for me: Amortized sampling for fast and stable training of energy-based models (Grathwohl et. al. 2020)

Estimate generator entropy through a variational approximation

Energy-based Model Introduction

Method 1: MCMC-based Training

Method 2: Learned Sampling Networks

Method 3: Score Matching

Future Directions

Score Matching

 \succ Rather than match p_{θ} to p, instead match $\nabla_x \log p_{\theta}$ to $\nabla_x \log p$

$$\begin{split} \succ L(\theta) &= \frac{1}{2} \mathbb{E}_{x \sim p} [\| \nabla_{x} \log p_{\theta} (x) - \nabla_{x} \log p (x) \|_{2}^{2}] \\ &= \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| \nabla_{x} \log p_{\theta} (x) \|_{2}^{2} + tr(\nabla_{x}^{2} \log p_{\theta} (x)) \right] + \mathbf{C} \\ &\propto \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| \nabla_{x} E_{\theta} (x) \|_{2}^{2} - tr(\nabla_{x}^{2} E_{\theta} (x)) \right] + \mathbf{C} \end{split}$$

> Objective avoids computing partition function, but requires computing the Hessian trace

Sliced Score Matching

Uses Hutchinson's Estimator: an efficient and unbiased estimator for matrix trace

 $\succ tr(A) = \mathbb{E}[v^T A v] \text{ if } v \sim N(0, I)$

Hessian trace can be computed as a Hessian-vector product

> Avoids explicitly computing the full Hessian

> Efficient with reverse-mode auto-differentiation (Pytorch, Tensorflow, etc.)

Denoising Score Matching

> The score matching objective can also be interpreted as denoising noisy samples

$$\succ L(\theta) = \frac{1}{2} \mathbb{E}_{x \sim p, \, \hat{x} \sim N(x, \sigma^2)} \left[\left\| -\nabla_x E_\theta(\hat{x}) - \frac{x - \hat{x}}{\sigma^2} \right\|_2^2 \right]$$

Intuition:

- $L(\theta)$ is minimized when $-\nabla_{x}E_{\theta}(\hat{x})$ points toward the original sample x
- Alternatively, a gradient descent step on E_{θ} starting from \hat{x} should go in the direction of x

Rationale for Multiple Noise Scales

- \succ Recent work suggests using multiple Gaussian noise scales $\{\sigma_i\}_{i=1}^k$
 - > Generative Modeling by Estimating Gradients of the Data Distribution (Song & Ermon 2019)
 - Learning Energy-Based Models in High-Dimensional Spaces with Multi-Scale Denoising Score Matching (Li et. al. 2019)

Comparison of Training Methods

	Strengths	Weaknesses
MCMC-Based Training	 Implicit sampling using backprop on the EBM provides a good inductive bias (convolutional EBM	 Slow due to sequential MCMC at each training iteration Tricky to tune SGLD hyperparameters to get chains to mix quickly
Learned Samplers	Efficient trainingEfficient sampling	 Unstable training due to joint optimization of generator and EBM Double the number of parameters to estimate
Score Matching	Efficient and stable training	 Only trains on points in the vicinity of the true data distribution

Energy-based Model Introduction

Method 1: MCMC-based Training

- Method 2: Learned Sampling Networks
- Method 3: Score Matching

Future Directions

Future Directions

Energy functions are extremely flexible (any scalar function of the data)

□ What values would make for interesting and useful energy functions?

- Example: Classifier uncertainty as an energy function
- Low uncertainty on the data distribution is a common inductive bias in semi-supervised learning
- High uncertainty away from the data distribution is desirable, but not currently a feature of modern deep learning models

More generally, how can EBM training be incorporated into classifiers to give classifiers useful properties?

References

• SGLD

- Max Welling, Yee Whye Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. 2011.
- MCMC-based Training
 - Erik Nijkamp, Mitch Hill, Song-Chun Zhu, Ying Nian Wu. Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model. 2019.
 - Yilun Du, Igor Mordatch. Implicit Generation and Generalization in Energy-Based Models. 2020.
 - Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, Kevin Swersky. Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One. 2020.
- Learned Sampling Networks
 - Taesup Kim, Yoshua Bengio. *Deep Directed Generative Models with Energy-Based Probability Estimation*. 2016.
 - Rithesh Kumar, Sherjil Ozair, Anirudh Goyal, Aaron Courville, Yoshua Bengio. *Maximum Entropy Generators for Energy-Based Models*. 2019.
 - Will Grathwohl, Jacob Kelly, Milad Hashemi, Mohammad Norouzi, Kevin Swersky, David Duvenaud. No MCMC for me: Amortized sampling for fast and stable training of energy-based models. 2020.

•Score Matching

- Aapo Hyvarinen. Estimation of Non-Normalized Statistical Models by Score Matching. 2005.
- Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. 2010.
- Yang Song, Sahaj Garg, Jiaxin Shi, Stefano Ermon. *Sliced Score Matching: A Scalable Approach to Density and Score Estimation*. 2019.
- Yang Song, Stefano Ermon. *Generative Modeling by Estimating Gradients of the Data Distribution*. 2019.
- Zengyi Li, Yubei Chen, Friedrich T. Sommer. Learning Energy-Based Models in High-Dimensional Spaces with Multi-scale Denoising Score Matching. 2019.