Building Machine
Learning Models like
Open-Source Software
with git-theta

Nikhil Kandpal & Colin Raffel




Deep learning circa 2013 - training models from scratch




Deep learning in 2023 — pre-train then adapt
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The benefits — and costs — of scale
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Compute (TPUvV3 core days)

From “PaLM: Scaling Language Modeling with Pathways"” by Chowdhery et al. and “Scaling Vision Transformers” by Zhai et al.
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The benefits — and costs — of scale
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Increased costs have decreased sharing

Introducing the LightOn Muse API
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This is a picture of two teddy
bears on the moon.

What are they doing?
They are having a conversation.
‘What object are they using?
It looks like a computer.
Is this surprising?
Yes, it is surprising.

Why is this picture surprising
to you?

1 think it is surprising because
teddy bears are not usually
found on the moon.

PRICING LOG IN JOIN >

s e . OpenAlI technology, just an HTTPS call away

Apply our API to any language task — semantic search,
summarization, sentiment analysis, content generation,
translation, and more — with only a few examples or by




Popular public models often come from resource-rich groups
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... and the models themselves are rarely updated
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Models can exhibit issues, like memorized training data
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From “Extracting Training Data from Large Language Models” by Carlini et al.
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Issues with a model can be caused by issues with a dataset
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From “Deduplicating Training Data Mitigates Privacy Risks in Language Models” by Kandpal et al.




Pre-training datasets can also fail to address downstream needs
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From “Large Language Models Struggle to Learn Long-Tail Knowledge" by Kandpal et al.



Pre-trained models are often used as the basis for derivative models
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How can we enable collaborative and
continual development of machine
learning models?



Contributors need to be able to cheaply
communicate patches to a model.



Updating a subset of parameters reduces communication costs
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From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.



Updating models by rescaling activations
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From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.



Maintainers need to be able to merge
updates from different contributors.



Model merging enables new paths for transferring capabilities
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.



Merging fine-tuned models for better pre-trained models
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From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.



We need to be able to combine modular
components to enable new capabilities.



Modularity by merging experts with SMEAR
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From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.



Users who lack resources need to be
able to train and run large models.



PETALS enables distributed inference of large models over the internet
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From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.



We need a system for version control
of model parameters.



git-theta tracks, merges, and updates models using the git workflow
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git-theta track model .pt

git commit -am "Add initial model"

python finetune.py —-dataset="cb" —--method="1lowrank"
git commit -am "Fine-tune on CB dataset with LoRA"
git checkout -b rte

python finetune.py —-dataset="rte" —--method="dense"
git commit -am "Fine-tune on RTE dataset"

git checkout main

python finetune.py —--dataset="anli" —--method="dense"
git commit -am "Fine-tune on ANLI dataset"

git merge rte

Fixing Merge Conflicts in model.pt
Actions:

avg) average: Average parameter values.

tt) take_them: Use their change to the parameter.
tu) take_us: Use our change to the parameter.

g) quit

avg

git commit -am "Merge RTE and ANLI models"

python trim_unused_embeddings.py

git commit -am "Remove embeddings for unused tokens"

TO

CB

RTE

ANLI

Merge Trim

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.



Communication-efficient updates result in significant space savings
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From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.



git-theta allows for continuous and collaborative model development
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From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.
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