
Building Machine
Learning Models like
Open-Source Software
with git-theta
Nikhil Kandpal & Colin Raffel

Deep learning circa 2013 – training models from scratch

Deep learning in 2023 – pre-train then adapt

From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

The benefits – and costs – of scale

From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

$5M in 2020

The benefits – and costs – of scale

From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

$5M in 2020

$7.5M in 2021

The benefits – and costs – of scale

From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

$5M in 2020

$7.5M in 2021

$27M in 2022

The benefits – and costs – of scale

From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

$5M in 2020

$7.5M in 2021

$750K

$27M in 2022

The benefits – and costs – of scale

Increased costs have decreased sharing

Popular public models often come from resource-rich groups

… and the models themselves are rarely updated

2018

2019

2019

2019

2021

2019

2019

From “Extracting Training Data from Large Language Modelsˮ by Carlini et al.

Models can exhibit issues, like memorized training data

Prefix

Memorized text

Language
Model

From “Deduplicating Training Data Mitigates Privacy Risks in Language Modelsˮ by Kandpal et al.

Issues with a model can be caused by issues with a dataset

From “Large Language Models Struggle to Learn Long-Tail Knowledge" by Kandpal et al.

Pre-training datasets can also fail to address downstream needs

T5

UnifiedQA

MACAW

T5.1.1

T5LM

T0

mT5

ByT5

Muse

SentenceT5

Imagen

Additional training
New model Flan-T5

Tk-InstructmT0

Reuse part of the model

PaLI

Pre-trained models are often used as the basis for derivative models

How can we enable collaborative and
continual development of machine
learning models?

How can we enable collaborative and
continual development of machine
learning models?

Contributors need to be able to cheaply
communicate patches to a model.

From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Updating a subset of parameters reduces communication costs

From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

Updating models by rescaling activations

How can we enable collaborative and
continual development of machine
learning models?

Maintainers need to be able to merge
updates from different contributors.

Pre-trained

TargetDonor 1

Donor 2

Pre-trained

Donor

Target

Pre-training Donor TargetPre-training Target

From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Model merging enables new paths for transferring capabilities

From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.

Base
model

Distributed
fine-tuning

Merged
model

Fine-tuned
models

Merging fine-tuned models for better pre-trained models

How can we enable collaborative and
continual development of machine
learning models?

We need to be able to combine modular
components to enable new capabilities.

Modularity by merging experts with SMEAR

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.

How can we enable collaborative and
continual development of machine
learning models?

Users who lack resources need to be
able to train and run large models.

Peer 1

Layer 1

Layer 2

Layer 3

PETALS enables distributed inference of large models over the internet

Layer 8

Layer 9

Layer 6

Layer 7

Layer 8

Layer 9

Layer 10

Layer 11

Layer 12

Layer 4

Layer 5

Layer 6

Layer 7

Layer 9

Layer 10

Layer 11

Layer 1

Layer 4

Layer 5

Peer 2

Peer 3

Peer 4

From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.

How can we enable collaborative and
continual development of machine
learning models?

We need a system for version control
of model parameters.

$ git-theta track model.pt
$ git commit -am "Add initial model"
$ python finetune.py --dataset="cb" --method="lowrank"
$ git commit -am "Fine-tune on CB dataset with LoRA"
$ git checkout -b rte
$ python finetune.py --dataset="rte" --method="dense"
$ git commit -am "Fine-tune on RTE dataset"
$ git checkout main
$ python finetune.py --dataset="anli" --method="dense"
$ git commit -am "Fine-tune on ANLI dataset"
$ git merge rte
Fixing Merge Conflicts in model.pt
Actions:
 avg) average: Average parameter values.
 tt) take_them: Use their change to the parameter.
 tu) take_us: Use our change to the parameter.
 q) quit
θ avg
$ git commit -am "Merge RTE and ANLI models"
$ python trim_unused_embeddings.py
$ git commit -am "Remove embeddings for unused tokens"

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta tracks, merges, and updates models using the git workflow

T0 CB

RTE

ANLI TrimMerge

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

Communication-efficient updates result in significant space savings

T0 CB

RTE

ANLI TrimMerge

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta allows for continuous and collaborative model development

T0 CB

RTE

ANLI TrimMerge

Building Machine Learning Models Like Open Source Software, Communications of the ACM
Colin Raffel

Extracting Training Data from Large Language Models, USENIX Security 2021
Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, Alina Oprea, & Colin Raffel

Deduplicating Training Data Mitigates Privacy Risks in Language Models, ICML 2022
Nikhil Kandpal, Eric Wallace, & Colin Raffel

Large Language Models Struggle to Learn Long-Tail Knowledge, ICML 2023
Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, & Colin Raffel

Training Neural Networks with Fixed Sparse Masks, NeurIPS 2021
Yi-Lin Sung*, Varun Nair*, & Colin Raffel

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning, NeurIPS 2022
Haokun Liu*, Derek Tam*, Mohammed Muqeeth*, Jay Mohta, Tenghao Huang, Mohit Bansal, & Colin Raffel

Merging Models with Fisher-Weighted Averaging, NeurIPS 2022
Michael Matena & Colin Raffel

ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning, in submission
Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, & Leshem Choshen

Soft Merging of Experts with Adaptive Routing, in submission
Mohammed Muqeeth, Haokun Liu, & Colin Raffel

Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models, ICML 2023
Nikhil Kandpal٭, Brian Lester٭, Mohammed Muqeeth, Anisha Mascarenhas, Monty Evans, Vishal Baskaran, Tenghao Huang, Haokun Liu, & Colin Raffel

Petals: Collaborative Inference and Fine-tuning of Large Models, ACL 2023
Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chumachenko, Pavel Samygin, & Colin Raffel

https://dl.acm.org/doi/10.1145/3545111
https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2202.06539
https://arxiv.org/abs/2211.08411
https://arxiv.org/abs/2111.09839
https://arxiv.org/abs/2205.05638
https://arxiv.org/abs/2111.09832
https://arxiv.org/abs/2212.01378
https://arxiv.org/abs/2209.01188

