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Deep learning circa 2013 – training models from scratch



Deep learning in 2023 – pre-train then adapt



From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

The benefits – and costs – of scale
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From “PaLM Scaling Language Modeling with Pathwaysˮ by Chowdhery et al. and “Scaling Vision Transformersˮ by Zhai et al.

$5M in 2020

$7.5M in 2021

$750K

$27M in 2022

The benefits – and costs – of scale



Increased costs have decreased sharing



Popular public models often come from resource-rich groups



… and the models themselves are rarely updated
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From “Extracting Training Data from Large Language Modelsˮ by Carlini et al.

Models can exhibit issues, like memorized training data
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From “Deduplicating Training Data Mitigates Privacy Risks in Language Modelsˮ by Kandpal et al.

Issues with a model can be caused by issues with a dataset



From “Large Language Models Struggle to Learn Long-Tail Knowledge" by Kandpal et al.

Pre-training datasets can also fail to address downstream needs
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Pre-trained models are often used as the basis for derivative models





How can we enable collaborative and 
continual development of machine 
learning models?



How can we enable collaborative and 
continual development of machine 
learning models?

Contributors need to be able to cheaply 
communicate patches to a model.



From “Training Neural Networks with Fixed Sparse Masks" by Sung et al.

Updating a subset of parameters reduces communication costs



From “Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning" by Liu et al.

Updating models by rescaling activations



How can we enable collaborative and 
continual development of machine 
learning models?

Maintainers need to be able to merge 
updates from different contributors.
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From “Merging Models with Fisher-Weighted Averaging" by Matena et al.

Model merging enables new paths for transferring capabilities



From “ColD Fusion: Collaborative Descent for Distributed Multitask Finetuning" by Don-Yehiya et al.
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Merging fine-tuned models for better pre-trained models



How can we enable collaborative and 
continual development of machine 
learning models?

We need to be able to combine modular 
components to enable new capabilities.



Modularity by merging experts with SMEAR

From “Soft Merging of Experts with Adaptive Routing" by Muqeeth et al.



How can we enable collaborative and 
continual development of machine 
learning models?

Users who lack resources need to be
able to train and run large models.
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From “Petals: Collaborative Inference and Fine-tuning of Large Models" by Borzunov et al.



How can we enable collaborative and 
continual development of machine 
learning models?

We need a system for version control  
of model parameters.



$ git-theta track model.pt
$ git commit -am "Add initial model"
$ python finetune.py --dataset="cb" --method="lowrank"
$ git commit -am "Fine-tune on CB dataset with LoRA"
$ git checkout -b rte
$ python finetune.py --dataset="rte" --method="dense"
$ git commit -am "Fine-tune on RTE dataset"
$ git checkout main
$ python finetune.py --dataset="anli" --method="dense"
$ git commit -am "Fine-tune on ANLI dataset"
$ git merge rte
Fixing Merge Conflicts in model.pt
Actions:
  avg)  average: Average parameter values.
  tt)  take_them: Use their change to the parameter.
  tu)  take_us: Use our change to the parameter.
  q)  quit
θ avg
$ git commit -am "Merge RTE and ANLI models"
$ python trim_unused_embeddings.py
$ git commit -am "Remove embeddings for unused tokens"

From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta tracks, merges, and updates models using the git workflow
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From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

Communication-efficient updates result in significant space savings

T0 CB

RTE

ANLI TrimMerge



From “Git-Theta: A Git Extension for Collaborative Development of Machine Learning Models" by Kandpal et al.

git-theta allows for continuous and collaborative model development
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